
NAG C Library Function Document

nag_surviv_risk_sets (g12zac)

1 Purpose

nag_surviv_risk_sets (g12zac) creates the risk sets associated with the Cox proportional hazards model for
fixed covariates.

2 Specification

#include <nag.h>
#include <nagg12.h>

void nag_surviv_risk_sets (Nag_OrderType order, Integer n, Integer m, Integer ns,
const double z[], Integer pdz, const Integer isz[], Integer ip,
const double t[], const Integer ic[], const Integer isi[], Integer *num,
Integer ixs[], Integer *nxs, double x[], Integer mxn, Integer id[],
Integer *nd, double tp[], Integer irs[], NagError *fail)

3 Description

The Cox proportional hazards model (see Cox (1972b)) relates the time to an event, usually death or
failure, to a number of explanatory variables known as covariates. Some of the observations may be right-
censored, that is, the exact time to failure is not known, only that it is greater than a known time.

Let ti, for i ¼ 1; 2; . . . ; n, be the failure time or censored time for the ith observation with the vector of p
covariates zi. The covariance matrix Z is constructed so that it contains n rows with the ith row containing
the p covariates zi. It is assumed that censoring and failure mechanisms are independent. The hazard
function, � t; zð Þ, is the probability that an individual with covariates z fails at time t given that the
individual survived up to time t. In the Cox proportional hazards model, � t; zð Þ is of the form

� t; zð Þ ¼ �0 tð Þ exp zT�
� �

,

where �0 is the base-line hazard function, an unspecified function of time, and � is a vector of unknown
arguments. As �0 is unknown, the arguments � are estimated using the conditional or marginal likelihood.
This involves considering the covariate values of all subjects that are at risk at the time when a failure
occurs. The probability that the subject that failed had their observed set of covariate values is computed.

The risk set at a failure time consists of those subjects that fail or are censored at that time and those who
survive beyond that time. As risk sets are computed for every distinct failure time, it should be noted that
the combined risk sets may be considerably larger than the original data. If the data can be considered as
coming from different strata such that �0 varies from strata to strata but � remains constant, then
nag_surviv_risk_sets (g12zac) will return a factor that indicates to which risk set/strata each member of the
risk sets belongs rather than just to which risk set.

Given the risk sets the Cox proportional hazards model can then be fitted using a Poisson generalized
linear model (nag_glm_poisson (g02gcc) with nag_dummy_vars (g04eac) to compute dummy variables)
using Breslow’s approximation for ties (see Breslow (1974)). This will give the same fit as
nag_surviv_cox_model (g12bac). If the exact treatment of ties in discrete time is required, as given by
Cox (1972b), then the model is fitted as a conditional logistic model using nag_condl_logistic (g11cac).

4 References

Breslow N E (1974) Covariate analysis of censored survival data Biometrics 30 89–99

Cox D R (1972b) Regression models in life tables (with discussion) J. Roy. Statist. Soc. Ser. B 34 187–220

Gross A J and Clark VA (1975) Survival Distributions: Reliability Applications in the Biomedical Sciences
Wiley

g12 – Survival Analysis g12zac

[NP3660/8] g12zac.1

5 Arguments

1: order – Nag_OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order ¼ Nag_RowMajor or Nag_ColMajor.

2: n – Integer Input

On entry: n, the number of data points.

Constraint: n � 2.

3: m – Integer Input

On entry: the number of covariates in array z.

Constraint: m � 1.

4: ns – Integer Input

On entry: the number of strata. If ns > 0 then the stratum for each observation must be supplied in
isi.

Constraint: ns � 0.

5: z½dim� – const double Input

Note: the dimension, dim, of the array z must be at least

max 1; pdz�mð Þ when order ¼ Nag_ColMajor;
max 1; n� pdzð Þ when order ¼ Nag_RowMajor.

If order ¼ Nag_ColMajor, the i; jð Þth element of the matrix Z is stored in z½ j� 1ð Þ � pdzþ i� 1�.
If order ¼ Nag_RowMajor, the i; jð Þth element of the matrix Z is stored in z½ i� 1ð Þ � pdzþ j� 1�.
On entry: must contain the n covariates in column or row major order.

6: pdz – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array z.

Constraints:

if order ¼ Nag_ColMajor, pdz � n;
if order ¼ Nag_RowMajor, pdz � m.

7: isz½m� – const Integer Input

On entry: indicates which subset of covariates are to be included in the model.

isz½j� 1� � 1

The jth covariate is included in the model.

isz½j� 1� ¼ 0

The jth covariate is excluded from the model and not referenced.

Constraint: isz½j� 1� � 0 and at least one value must be non-zero

g12zac NAG C Library Manual

g12zac.2 [NP3660/8]

8: ip – Integer Input

On entry: p, the number of covariates included in the model as indicated by isz.

Constraint: ip ¼ the number of non-zero values of isz

9: t½n� – const double Input

On entry: the vector of n failure censoring times.

10: ic½n� – const Integer Input

On entry: the status of the individual at time t given in t.

ic½i� 1� ¼ 0

Indicates that the ith individual has failed at time t½i� 1�.
ic½i� 1� ¼ 1

Indicates that the ith individual has been censored at time t½i� 1�.
Constraint: ic½i� 1� ¼ 0 or 1, for i ¼ 1; 2; . . . ; n.

11: isi½dim� – const Integer Input

Note: the dimension, dim, of the array isi must be at least

n when ns > 0;
1 otherwise.

On entry: if ns > 0, the stratum indicators which also allow data points to be excluded from the
analysis.

If ns ¼ 0, isi is not referenced.

isi½i� 1� ¼ k

Indicates that the ith data point is in the kth stratum, where k ¼ 1; 2; . . . ;ns.

isi½i� 1� ¼ 0

Indicates that the ith data point is omitted from the analysis.

Constraint: if ns > 0, 0 � isi½i� 1� � ns, for i ¼ 1; 2; . . . ;n.

12: num – Integer * Output

On exit: the number of values in the combined risk sets.

13: ixs½mxn� – Integer Output

On exit: the factor giving the risk sets/strata for the data in x and id.

If ns ¼ 0 or 1, ixs½i� 1� ¼ l for members of the lth risk set.

If ns > 1, ixs½i� 1� ¼ j� 1ð Þ � ndþ l for the observations in the lth risk set for the jth strata.

14: nxs – Integer * Output

On exit: the number of levels for the risk sets/strata factor given in ixs.

15: x½mxn� ip� – double Output

Note: the dimension, dim, of the array x must be at least mxn � ip.

If order ¼ Nag_ColMajor, the i; jð Þth element of the matrix X is stored in x½ j� 1ð Þ � ipþ i� 1�.
If order ¼ Nag_RowMajor, the i; jð Þth element of the matrix X is stored in x½ i� 1ð Þ � ipþ j� 1�.
On exit: the first num rows contain the values of the covariates for the members of the risk sets.

g12 – Survival Analysis g12zac

[NP3660/8] g12zac.3

16: mxn – Integer Input

On entry: the first dimension of the array x and and the dimension of the arrays ixs and id as
declared in the function from which nag_surviv_risk_sets (g12zac) is called.

Constraint: mxn must be sufficiently large for the arrays to contain the expanded risk sets. The size
will depend on the pattern of failures times and censored times. The minimum value will be
returned in num unless the function exits with fail.code ¼ NE_INT

17: id½mxn� – Integer Output

On exit: indicates if the member of the risk set given in x failed.

id½i� 1� ¼ 1 if the member of the risk set failed at the time defining the risk set and id½i� 1� ¼ 0
otherwise.

18: nd – Integer * Output

On exit: the number of distinct failure times, i.e., the number of risk sets.

19: tp½n� – double Output

On exit: tp½i� 1� contains the ith distinct failure time, for i ¼ 1; 2; . . . ; nd.

20: irs½n� – Integer Output

On exit: indicates rows in x and elements in ixs and id corresponding to the risk sets. The first risk
set corresponding to failure time tp½0� is given by rows 1 to irs½0�. The lth risk set is given by rows
id½l � 2� þ 1 to id½l � 1�, for l ¼ 1; 2; . . . ;nd.

21: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_INT

On entry, element valueh i of ic is not equal to 0 or 1.

On entry, element valueh i of isi is not valid.

On entry, element valueh i of isz < 0.

On entry, m ¼ valueh i.
Constraint: m � 1.

On entry, n ¼ valueh i.
Constraint: n � 2.

On entry, ns ¼ valueh i.
Constraint: ns � 0.

On entry, pdz ¼ valueh i.
Constraint: pdz > 0.

g12zac NAG C Library Manual

g12zac.4 [NP3660/8]

NE_INT_2

On entry, pdz ¼ valueh i, m ¼ valueh i.
Constraint: pdz � m.

NE_INT_ARRAY_ELEM_CONS

mxn is too small: min value ¼ valueh i.
On entry, there are not ip values of isz > 0.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Not applicable.

8 Further Comments

When there are strata present, i.e., ns > 1, not all the nxs groups may be present.

9 Example

The data are the remission times for two groups of leukemia patients (see page 242 of Gross and Clark
(1975)). A dummy variable indicates which group they come from. The risk sets are computed using
nag_surviv_risk_sets (g12zac) and the Cox’s proportional hazard model is fitted using nag_condl_logistic
(g11cac).

9.1 Program Text

/* nag_surviv_risk_sets (g12zac) Example Program.
*
* Copyright 2002 Numerical Algorithms Group.
*
* Mark 7, 2002.
* Mark 7b revised, 2004.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg11.h>
#include <nagg12.h>

int main(void)
{

/* Scalars */
double dev, tol;
Integer exit_status, i, ip, iprint, j, lisi, m,

maxit, mxn, n, nd, ns, num, nxs, pdx, pdz;
NagError fail;
Nag_OrderType order;

/* Arrays */
double *b = 0, *cov = 0, *sc = 0, *se = 0, *t = 0, *tp = 0,

*x = 0, *z = 0;
Integer *ic = 0, *id = 0, *irs = 0, *isi = 0, *isz = 0, *ixs = 0,

*nca = 0, *nct = 0;

#ifdef NAG_COLUMN_MAJOR
#define Z(I,J) z[(J-1)*pdz + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

order = Nag_ColMajor;

g12 – Survival Analysis g12zac

[NP3660/8] g12zac.5

#else
#define Z(I,J) z[(I-1)*pdz + J - 1]
#define X(I,J) x[(I-1)*pdx + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
exit_status = 0;

Vprintf("nag_surviv_risk_sets (g12zac) Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");

Vscanf("%ld%ld%ld%ld%ld%*[^\n] ", &n,
&m, &ns, &maxit, &iprint);

/* Allocate arrays t, z, ic and isi */
if (ns > 0)

lisi = n;
else

lisi = 1;
if (!(t = NAG_ALLOC(n, double)) ||

!(z = NAG_ALLOC(n * n, double)) ||
!(ic = NAG_ALLOC(n, Integer)) ||
!(isi = NAG_ALLOC(lisi, Integer)) ||
!(isz = NAG_ALLOC(m, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

if (order == Nag_ColMajor)
{

pdz = n;
}

else
{

pdz = m;
}

if (ns > 0)
{

for (i = 1; i <= n; ++i)
{

Vscanf("%lf", &t[i-1]);
for (j = 1; j <= m; ++j)

Vscanf("%lf", &Z(i,j));
Vscanf("%ld%ld%*[^\n] ", &ic[i-1], &isi[i-1]);

}
}

else
{

for (i = 1; i <= n; ++i)
{

Vscanf("%lf", &t[i-1]);
for (j = 1; j <= m; ++j)

Vscanf("%lf", &Z(i,j));
Vscanf("%ld%*[^\n] ", &ic[i-1]);

}
}

for (i = 1; i <= m; ++i)
Vscanf("%ld", &isz[i-1]);

Vscanf("%ld%*[^\n] ", &ip);

/* Allocate other arrays for nag_surviv_risk_sets (g12zac) */
mxn = 1000;

g12zac NAG C Library Manual

g12zac.6 [NP3660/8]

if (order == Nag_ColMajor)
{

pdx = mxn;
}

else
{

pdx = ip;
}

if (!(cov = NAG_ALLOC(ip*(ip+1)/2, double)) ||
!(sc = NAG_ALLOC(ip, double)) ||
!(se = NAG_ALLOC(ip, double)) ||
!(tp = NAG_ALLOC(n, double)) ||
!(x = NAG_ALLOC(mxn * ip, double)) ||
!(id = NAG_ALLOC(mxn, Integer)) ||
!(irs = NAG_ALLOC(n, Integer)) ||
!(ixs = NAG_ALLOC(mxn, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* nag_surviv_risk_sets (g12zac).
* Creates the risk sets associated with the Cox
* proportional hazards model for fixed covariates
*/

nag_surviv_risk_sets(order, n, m, ns, z, pdz, isz, ip, t, ic, isi, &num, ixs,
&nxs, x, mxn, id, &nd, tp, irs, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_surviv_risk_sets (g12zac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Allocate arrays for nag_condl_logistic (g11cac) */
if (!(b = NAG_ALLOC(ip, double)) ||

!(nca = NAG_ALLOC(nxs, Integer)) ||
!(nct = NAG_ALLOC(nxs, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

for (i = 1; i <= ip; ++i)
Vscanf("%lf", &b[i-1]);

Vscanf("%*[^\n] ");

tol = 1e-5;
/* nag_condl_logistic (g11cac).
* Returns parameter estimates for the conditional analysis
* of stratified data
*/

nag_condl_logistic(order, num, ip, nxs, x, pdx, isz, ip, id, ixs, &dev, b, se,
sc, cov, nca, nct, tol, maxit, iprint, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from nag_condl_logistic (g11cac).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf("\n");
Vprintf(" Parameter Estimate Standard Error\n");
Vprintf("\n");
for (i = 1; i <= ip; ++i)

Vprintf("%5ld %8.4f %8.4f \n",
i, b[i-1], se[i-1]);

g12 – Survival Analysis g12zac

[NP3660/8] g12zac.7

END:
if (b) NAG_FREE(b);
if (cov) NAG_FREE(cov);
if (sc) NAG_FREE(sc);
if (se) NAG_FREE(se);
if (t) NAG_FREE(t);
if (tp) NAG_FREE(tp);
if (x) NAG_FREE(x);
if (z) NAG_FREE(z);
if (ic) NAG_FREE(ic);
if (id) NAG_FREE(id);
if (irs) NAG_FREE(irs);
if (isi) NAG_FREE(isi);
if (isz) NAG_FREE(isz);
if (ixs) NAG_FREE(ixs);
if (nca) NAG_FREE(nca);
if (nct) NAG_FREE(nct);

return exit_status;
}

9.2 Program Data

nag_surviv_risk_sets (g12zac) Example Program Data

42 1 0 20 0

1 0 0
1 0 0
2 0 0
2 0 0
3 0 0
4 0 0
4 0 0
5 0 0
5 0 0
8 0 0
8 0 0
8 0 0
8 0 0

11 0 0
11 0 0
12 0 0
12 0 0
15 0 0
17 0 0
22 0 0
23 0 0
6 1 0
6 1 0
6 1 0
7 1 0

10 1 0
13 1 0
16 1 0
22 1 0
23 1 0
6 1 1
9 1 1

10 1 1
11 1 1
17 1 1
19 1 1
20 1 1
25 1 1
32 1 1
32 1 1
34 1 1
35 1 1

g12zac NAG C Library Manual

g12zac.8 [NP3660/8]

1 1

0.0 0.0

9.3 Program Results

nag_surviv_risk_sets (g12zac) Example Program Results

Parameter Estimate Standard Error

1 1.6282 0.4331

g12 – Survival Analysis g12zac

[NP3660/8] g12zac.9 (last)

	g12zac
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	n
	m
	ns
	z
	pdz
	isz
	ip
	t
	ic
	isi
	num
	ixs
	nxs
	x
	mxn
	id
	nd
	tp
	irs
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INT_ARRAY_ELEM_CONS
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

